If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x+x+x+x=160
We move all terms to the left:
2x^2+x+x+x+x-(160)=0
We add all the numbers together, and all the variables
2x^2+4x-160=0
a = 2; b = 4; c = -160;
Δ = b2-4ac
Δ = 42-4·2·(-160)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-36}{2*2}=\frac{-40}{4} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+36}{2*2}=\frac{32}{4} =8 $
| 256=2^(n-1) | | 4^5x+10=7^5x+10 | | 7x+44=23 | | x2+13=14x | | n^2-n-84=0 | | x2+27=-12x | | 9x2-6x+5=0 | | r^2+6r-7=10 | | 90=3n+2 | | 50z=-50-80(1-z) | | 4x+(-6)=50 | | 5x=2,10x/4= | | 8=2g=12 | | 6-9x=-5x-10+18 | | 2x^2+4=130 | | 14x-5-x=2x+17 | | 7-8x=70 | | 17x-13=52 | | 3(d−19)=2(29−d) | | 2x-54=9 | | X=60-0.2z | | 2+60+x=85 | | x^2-5=6x-14 | | 2.53=x/(2-x) | | 6a-5=23 | | 5/n=40/72 | | 3y+9/2=42/2 | | (4x+5)=2.3 | | 7=5+2(x+4) | | x^2-√5x-19=0 | | n=2n-7n=11 | | (n)+2n-7n=11 |